Mitochondrial uncoupling protein is required for efficient photosynthesis

L.J. Sweetlove, A. Lytovchenko, M. Morgan, A. Nunes-Nesi, Nicolas Taylor, C.J. Baxter, I. Eickmeier, A.R. Fernie

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Uncoupling proteins (UCPs) occur in the inner mitochondrial membrane and dissipate the proton gradient across this membrane that is normally used for ATP synthesis. Although the catalytic function and regulation of plant UCPs have been described, the physiological purpose of UCP in plants has not been established. Here, biochemical and physiological analyses of an insertional knockout of one of the Arabidopsis UCP genes (AtUCP1) are presented that resolve this issue. Absence of UCP1 results in localized oxidative stress but does not impair the ability of the plant to withstand a wide range of abiotic stresses. However, absence of UCP1 results in a photosynthetic phenotype. Specifically there is a restriction in photorespiration with a decrease in the rate of oxidation of photorespiratory glycine in the mitochondrion. This change leads to an associated reduced photosynthetic carbon assimilation rate. Collectively, these results suggest that the main physiological role of UCP1 in Arabidopsis leaves is related to maintaining the redox poise of the mitochondrial electron transport chain to facilitate photosynthetic metabolism.
Original languageEnglish
Pages (from-to)19587-19592
JournalProceedings of the National Academy of Sciences of the United States of America
Volume103
Issue number51
DOIs
Publication statusPublished - 2006

Fingerprint Dive into the research topics of 'Mitochondrial uncoupling protein is required for efficient photosynthesis'. Together they form a unique fingerprint.

Cite this